Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.674
Filtrar
1.
Front Immunol ; 15: 1369311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601162

RESUMO

Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results: The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion: This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , MicroRNAs , Humanos , Influenza Humana/genética , COVID-19/genética , SARS-CoV-2 , Biologia Computacional , MicroRNAs/genética , Fatores de Transcrição , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
2.
Proc Natl Acad Sci U S A ; 121(15): e2316662121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557187

RESUMO

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Mutação , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
3.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579682

RESUMO

Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.


Assuntos
Edição de Genes , Infecções por HIV , HIV-1 , Humanos , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética
4.
Eur Rev Med Pharmacol Sci ; 28(6): 2430-2463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567606

RESUMO

Human Immunodeficiency Virus (HIV) has continuously been the greatest epidemic for humanity over a period spanning almost five decades. With no specific cure or treatment available to date despite extensive research, the C-C Chemokine Receptor 5, Delta 32 (CCR5 Δ32) allele genetic point mutation plays an imperative role in the prevention of acquired immunodeficiency syndrome (AIDS). This comprehensive study aims to review the induction of the homozygous recessive deletion genotype using the Clustered Regularly Interspaced Short Palindromic Repeats, Cas 9 Enzyme (CRISPR-Cas9), and hematopoietic stem cell transplantation under positive selection pressure for active immunity in seropositive patients' populations as the phenotype. A methodology is proposed to trigger a significant increase in the expression of Delta 32 beneficial mutant alleles within controlled modern healthcare facilities utilizing totipotent stem cells through somatic gene therapy. It acts upon two dysfunctional CCR5 genes, translating mutant G protein-coupled co-receptors, whose primary function is similar to that of C-X-C Motif Chemokine receptor 4 (CXCR4), by blocking the entry of viral RNA into the CD4+ T helper lymphocytes, halting infection and seizing viral life cycle. This modification is endemic in Northern Europe, where it naturally pertains to the Caucasian descent population samples in the form of polymorphism, p (X=0.01), where X is the probability of frequency of complete immunity against HIV-1 in population samples. The epigenetics of the single nucleotide polymorphism (SNP) are analyzed as they play a significant role in immunity distribution. Furthermore, a comparative analysis within the ethical boundaries of CRISPR-Cas9 is conducted to discuss the practical aspects and challenges of the presented methodologies and treatment alternatives. Additionally, the study assembles all available data and summarizes preexisting research while providing a promising solution to this ethical dilemma. Finally, a methodology is devised to answer the question of whether the variant-specific epidemic of AIDS caused by HIV-1 can be cured via artificially inducing immunity by CRISPR-Cas9.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Síndrome de Imunodeficiência Adquirida/genética , Síndrome de Imunodeficiência Adquirida/terapia , Infecções por HIV/genética , Infecções por HIV/terapia , Sistemas CRISPR-Cas/genética , Receptores CCR5/genética , Receptores CCR5/metabolismo , Mutação , Terapia Genética , Polimorfismo de Nucleotídeo Único , Frequência do Gene
5.
Cell Stem Cell ; 31(4): 433-434, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579679

RESUMO

The chemokine receptors CCR5 and CXCR4 are "front doors" for HIV-1 infection in host cells, and their targeting represents a potential solution for a cure. Dudek et al.1 now propose a new gene editing strategy to simultaneously block CCR5- and CXCR4-mediated HIV-1 entry in autologous hematopoietic stem and progenitor cells (HSPCs).


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Células-Tronco Hematopoéticas , Receptores CCR5/genética , Infecções por HIV/genética , Receptores CXCR4/genética , Edição de Genes
6.
Commun Biol ; 7(1): 344, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509308

RESUMO

Determinants of HIV-1 latency establishment are yet to be elucidated. HIV reservoir comprises a rare fraction of infected cells that can survive host and virus-mediated killing. In vitro reporter models so far offered a feasible means to inspect this population, but with limited capabilities to dissect provirus silencing dynamics. Here, we describe a new HIV reporter model, HIV-Timer of cell kinetics and activity (HIV-Tocky) with dual fluorescence spontaneous shifting to reveal provirus silencing and reactivation dynamics. This unique feature allows, for the first time, identifying two latent populations: a directly latent, and a recently silenced subset, with the latter having integration features suggestive of stable latency. Our proposed model can help address the heterogeneous nature of HIV reservoirs and offers new possibilities for evaluating eradication strategies.


Assuntos
Infecções por HIV , Provírus , Humanos , Provírus/genética , Latência Viral/genética , Infecções por HIV/genética
7.
Nat Commun ; 15(1): 2465, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548722

RESUMO

Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Proteínas Relacionadas à Autofagia/genética , Polimorfismo Genético , Autofagia/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
8.
Mol Genet Genomic Med ; 12(3): e2362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451012

RESUMO

BACKGROUND: The ABCG2 421C/A polymorphism contributes significantly to the distribution and absorption of antiretroviral (ARV) regimens and is associated with the undesirable side effects of efavirenz. METHODS: To investigate this, we examined ABCG2 34G/A (rs2231137) and 421C/A (rs2231142) genetic variations in 149 HIV-infected patients (116 without hepatotoxicity, 33 with ARV-induced hepatotoxicity) and 151 healthy controls through the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS AND DISCUSSION: The ABCG2 34GA genotype and 34A allele indicated a risk for antiretroviral therapy-associated hepatotoxicity development (p = 0.09, OR = 1.58, 95% CI: 0.93-2.69; p = 0.06, OR = 1.50, 95% CI: 0.98-2.30). The haplotype GA was associated with hepatotoxicity (p = 0.042, OR = 2.37, 95% CI: 1.04-5.43; p = 0.042, OR = 2.49, 95% CI: 1.04-5.96). Moreover, when comparing HIV patients with hepatotoxicity to healthy controls, the haplotype GA had an association with an elevated risk for the development of hepatotoxicity (p = 0.041, OR = 1.73, 95% CI: 1.02-2.93). Additionally, the association of the ABCG2 34GA genotype with the progression of HIV (p = 0.02, OR = 1.97, 95% CI: 1.07-3.63) indicated a risk for advanced HIV infection. Furthermore, the ABCG2 421AA genotype was linked to tobacco users and featured as a risk factor for the progression of HIV disease (p = 0.03, OR = 11.07, 95% CI: 1.09-270.89). CONCLUSION: The haplotype GA may enhance the risk of hepatotoxicity development and its severity. Individuals with the ABCG2 34A allele may also be at risk for the development of hepatotoxicity. Additionally, individuals with an advanced stage of HIV and the ABCG2 34GA genotype may be at risk for disease progression.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/complicações , Polimorfismo de Nucleotídeo Único , Genótipo , Fatores de Risco , Doença Hepática Induzida por Substâncias e Drogas/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética
9.
Sci Adv ; 10(12): eadl0368, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507500

RESUMO

CCR5 serves as R5-tropic HIV co-receptor. Knocking out CCR5 in HIV patients, which has occurred <10 times, is believed important for cure. JAK/STAT inhibitors tofacitinib and ruxolitinib inhibit CCR5 expression in HIV+ viremic patients. We investigated the association of JAK/STAT signaling pathway with CCR5/CCR2 expression in human primary CD4+ T cells and confirmed its importance. Six of nine JAK/STAT inhibitors that reduced CCR5/CCR2 expression were identified. Inhibitor-treated CD4+ T cells were relatively resistant, specifically to R5-tropic HIV infection. Furthermore, single JAK2, STAT3, STAT5A, and STAT5B knockout and different combinations of JAK/STAT knockout significantly reduced CCR2/CCR5 expression of both RNA and protein levels, indicating that CCR5/CCR2 expression was positively regulated by JAK-STAT pathway in CD4+ T cells. Serum and glucocorticoid-regulated kinase 1 (SGK1) knockout affected CCR2/CCR5 gene expression, suggesting that SGK1 is involved in CCR2/CCR5 regulation. If cell surface CCR5 levels can be specifically and markedly down-regulated without adverse effects, that may have a major impact on the HIV cure agenda.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Janus Quinases/metabolismo , HIV-1/fisiologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD4-Positivos/metabolismo
10.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466776

RESUMO

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Assuntos
Metilação de DNA , Infecções por HIV , Humanos , Epigenoma , Epigênese Genética , Leucócitos Mononucleares , Infecções por HIV/genética , Ilhas de CpG , Carcinogênese/genética , Estudo de Associação Genômica Ampla/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética
11.
Proc Natl Acad Sci U S A ; 121(12): e2321907121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457490

RESUMO

The discovery of the 32-bp deletion allele of the chemokine receptor gene CCR5 showed that homozygous carriers display near-complete resistance to HIV infection, irrespective of exposure. Algorithms of molecular evolutionary theory suggested that the CCR5-∆32 mutation occurred but once in the last millennium and rose by strong selective pressure relatively recently to a ~10% allele frequency in Europeans. Several lines of evidence support the hypothesis that CCR5-∆32 was selected due to its protective influence to resist Yersinia pestis, the agent of the Black Death/bubonic plague of the 14th century. Powerful anti-AIDS entry inhibitors targeting CCR5 were developed as a treatment for HIV patients, particularly those whose systems had developed resistance to powerful anti-retroviral therapies. Homozygous CCR5-∆32/∆32 stem cell transplant donors were used to produce HIV-cleared AIDS patients in at least five "cures" of HIV infection. CCR5 has also been implicated in regulating infection with Staphylococcus aureus, in recovery from stroke, and in ablation of the fatal graft versus host disease (GVHD) in cancer transplant patients. While homozygous CCR5-∆32/32 carriers block HIV infection, alternatively they display an increased risk for encephalomyelitis and death when infected with the West Nile virus.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , Humanos , Infecções por HIV/genética , Infecções por HIV/tratamento farmacológico , Frequência do Gene , Receptores CCR5/genética , Síndrome de Imunodeficiência Adquirida/genética , Mutação , Homozigoto
12.
Curr Opin HIV AIDS ; 19(3): 102-109, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547337

RESUMO

PURPOSE OF REVIEW: This review highlights advances in understanding the epigenetic control mechanisms that regulate HIV-1 latency mechanisms in T-cells and microglial cells and describes the potential of current therapeutic approaches targeting the epigenetic machinery to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS: Large-scale unbiased CRISPR-Cas9 library-based screenings, coupled with biochemical studies, have comprehensively identified the epigenetic factors pivotal in regulating HIV-1 latency, paving the way for potential novel targets in therapeutic development. These studies also highlight how the bivalency observed at the HIV-1 5'LTR primes latent proviruses for rapid reactivation. SUMMARY: The HIV-1 latent is established very early during infection, and its persistence is the major obstacle to achieving an HIV-1 cure. Here, we present a succinct summary of the latest research findings, shedding light on the pivotal roles played by host epigenetic machinery in the control of HIV-1 latency. Newly uncovered mechanisms permitting rapid reversal of epigenetic restrictions upon viral reactivation highlight the formidable challenges of achieving enduring and irreversible epigenetic silencing of HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Latência Viral/genética , Infecções por HIV/genética , HIV-1/genética , Linfócitos T , Epigênese Genética , Linfócitos T CD4-Positivos
13.
Clin Chim Acta ; 556: 117830, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354999

RESUMO

Protease inhibitors (PIs) are associated with an incidence of lipodystrophy among people living with HIV(PLHIV). Lipodystrophiesare characterised by the loss of adipose tissue. Evidence suggests that a patient's lipodystrophy phenotype is influenced by genetic mutation, age, gender, and environmental and genetic factors, such as single-nucleotide variants (SNVs). Pathogenic variants are considered to cause a more significant loss of adipose tissue compared to non-pathogenic. Lipid metabolising enzymes and transporter genes have a role in regulating lipoprotein metabolism and have been associated with lipodystrophy in HIV-infected patients (LDHIV). The long-term effect of the lipodystrophy syndrome is related to cardiovascular diseases (CVDs). Hence, we determined the SNVs of lipid metabolising enzymes and transporter genes in a total of 48 patient samples, of which 24 were with and 24 were without HIV-associated lipodystrophy (HIVLD) using next-generation sequencing. A panel of lipid metabolism, transport and elimination genes were sequenced. Three novel heterozygous non-synonymous variants at exon 8 (c.C1400A:p.S467Y, c.G1385A:p.G462E, and c.T1339C:p.S447P) in the ABCB6 gene were identified in patients with lipodystrophy. One homozygous non-synonymous SNV (exon5:c.T358C:p.S120P) in the GRN gene was identified in patients with lipodystrophy. One novelstop-gain SNV (exon5:c.C373T:p.Q125X) was found in the GRN gene among patients without lipodystrophy. Patients without lipodystrophy had one homozygous non-synonymous SNV (exon9:c.G1462T:p.G488C) in the ABCB6 gene. Our findings suggest that novel heterozygous non-synonymous variants in the ABCB6 gene may contribute to defective protein production, potentially intensifying the severity of lipodystrophy. Additionally, identifying a stop-gain SNV in the GRN gene among patients without lipodystrophy implies a potential role in the development of HIVLD.


Assuntos
Infecções por HIV , Síndrome de Lipodistrofia Associada ao HIV , Lipodistrofia , Humanos , Síndrome de Lipodistrofia Associada ao HIV/genética , Síndrome de Lipodistrofia Associada ao HIV/complicações , Lipodistrofia/genética , Lipodistrofia/complicações , Lipodistrofia/epidemiologia , Mutação , Tecido Adiposo , Lipídeos , Infecções por HIV/complicações , Infecções por HIV/genética , Transportadores de Cassetes de Ligação de ATP/genética , Progranulinas/genética
14.
Mol Biol Rep ; 51(1): 342, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400997

RESUMO

Myeloid cells play a vital role in innate immune responses as they recognize and phagocytose pathogens like viruses, present antigens, produce cytokines, recruit other immune cells to combat infections, and contribute to the attenuation of immune responses to restore homeostasis. Signal integration by pathogen recognition receptors enables myeloid cells to adapt their functions by a network of transcription factors and chromatin remodelers. This review provides a brief overview of the subtypes of myeloid cells and the main epigenetic regulation mechanisms. Special focus is placed on the epigenomic alterations in viral nucleic acids of HIV and SARS-CoV-2 along with the epigenetic changes in the host's myeloid cell compartment. These changes are important as they lead to immune suppression and promote the progression of the disease. Finally, we highlight some promising examples of 'epidrugs' that modulate the epigenome of immune cells and could be used as therapeutics for viral infections.


Assuntos
COVID-19 , Infecções por HIV , Humanos , COVID-19/genética , SARS-CoV-2 , Epigênese Genética , Células Mieloides , Infecções por HIV/genética
15.
Genes (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397182

RESUMO

Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.


Assuntos
Retrovirus Endógenos , Infecções por HIV , Humanos , Retrovirus Endógenos/genética , Infecções por HIV/genética , Regulação da Expressão Gênica , Epigênese Genética , DNA
16.
Genes (Basel) ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397248

RESUMO

Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform. After RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR), minor modifications were applied to the Vela Sentosa kit to adapt it to the Illumina Miseq platform. Analysis of the results showed the same mutations present in the samples using both sequencing platforms. The total number of reads varied from 185,069 to 752,343 and from 642,162 to 2,074,028 in the Ion Torrent PGM platform and the Illumina Miseq platform, respectively. The average depth was 21,955 and 46,856 for Ion Torrent PGM and Illumina Miseq platforms, respectively. The cost of sequencing a run of eight samples was quite similar between the two platforms (about USD 1790 for Illumina Miseq and about USD 1833 for Ion Torrent PGM platform). We have shown for the first time that it is possible to adapt and use the Vela Sentosa kit for the Illumina Miseq platform to obtain high-quality results with a similar cost.


Assuntos
Infecções por HIV , HIV , Humanos , HIV/genética , Mutação , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
17.
Mol Biol Rep ; 51(1): 147, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236501

RESUMO

BACKGROUND: Continuous application of "combination antiretroviral therapy" (cART) has transformed Human immunodeficiency virus (HIV) infection into a manageable chronic disease; however, due to lasting inflammation and cumulative toxicity, progressive pathophysiological changes do occur and potentially lead to accelerated aging, among others, contributing to telomere shortening. The single nucleotide polymorphisms (SNP) rs2736100 and rs2736098 are particularly important for human telomerase (TERT) gene expression. The objective of this study was to evaluate the effects of clinical parameters and single nucleotide polymorphisms in TERT (rs2736100 and rs2736098) on telomere length in HIV-infected patients. METHODS AND RESULTS: This cross-sectional study included 176 patients diagnosed with HIV infection. Relative telomere length (RTL) was determined by real-time polymerase chain reaction (qPCR), whereas genotyping was performed by polymerase chain reaction, followed by restriction fragment length polymorphism analysis (PCR-RFLP). The mean age of the patients (p = .904), time since HIV diagnosis (p = .220), therapy-related variables such as the cART regimen (0.761), and total cART duration (p = .096) did not significantly affect RTL. TERT rs2736100 genotype showed no association with RTL. However, TERT rs2736098 heterozygotes (GA) had significantly longer telomeres (P = .049) than both homozygotes (GG and AA). CONCLUSIONS: Our findings support the fact that cellular aging in HIV-infected patients is influenced by the TERT rs2736098 polymorphism.


Assuntos
Infecções por HIV , Telomerase , Humanos , Polimorfismo de Nucleotídeo Único/genética , Telomerase/genética , Estudos Transversais , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Telômero/genética
18.
Science ; 383(6680): 319-325, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236978

RESUMO

Heterozygosity of Human leukocyte antigen (HLA) class I genes is linked to beneficial outcomes after HIV infection, presumably through greater breadth of HIV epitope presentation and cytotoxic T cell response. Distinct allotype pairs, however, differ in the extent to which they bind shared sets of peptides. We developed a functional divergence metric that measures pairwise complementarity of allotype-associated peptide binding profiles. Greater functional divergence for pairs of HLA-A and/or HLA-B allotypes was associated with slower AIDS progression and independently with enhanced viral load control. The metric predicts immune breadth at the peptide level rather than gene level and redefines HLA heterozygosity as a continuum differentially affecting disease outcome. Functional divergence may affect response to additional infections, vaccination, immunotherapy, and other diseases where HLA heterozygote advantage occurs.


Assuntos
Infecções por HIV , Antígenos HLA-B , Heterozigoto , Humanos , Alelos , Progressão da Doença , Infecções por HIV/genética , Infecções por HIV/patologia , Antígenos HLA-B/genética , Peptídeos/genética , Peptídeos/imunologia , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
19.
Int J Immunopathol Pharmacol ; 38: 3946320241231465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296818

RESUMO

OBJECTIVES: Antiretroviral therapy (ART) efficacy is jeopardized by the emergence of drug resistance mutations in HIV, compromising treatment effectiveness. This study aims to propose novel analogs of Effavirenz (EFV) as potential direct inhibitors of HIV reverse transcriptase, employing computer-aided drug design methodologies. METHODS: Three key approaches were applied: a mutational profile study, molecular dynamics simulations, and pharmacophore development. The impact of mutations on the stability, flexibility, function, and affinity of target proteins, especially those associated with NRTI, was assessed. Molecular dynamics analysis identified G190E as a mutation significantly altering protein properties, potentially leading to therapeutic failure. Comparative analysis revealed that among six first-line antiretroviral drugs, EFV exhibited notably low affinity with viral reverse transcriptase, further reduced by the G190E mutation. Subsequently, a search for EFV-similar inhibitors yielded 12 promising molecules based on their affinity, forming the basis for generating a pharmacophore model. RESULTS: Mutational analysis pinpointed G190E as a crucial mutation impacting protein properties, potentially undermining therapeutic efficacy. EFV demonstrated diminished affinity with viral reverse transcriptase, exacerbated by the G190E mutation. The search for EFV analogs identified 12 high-affinity molecules, culminating in a pharmacophore model elucidating key structural features crucial for potent inhibition. CONCLUSION: This study underscores the significance of EFV analogs as potential inhibitors of HIV reverse transcriptase. The findings highlight the impact of mutations on drug efficacy, particularly the detrimental effect of G190E. The generated pharmacophore model serves as a pivotal reference for future drug development efforts targeting HIV, providing essential structural insights for the design of potent inhibitors based on EFV analogs identified in vitro.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Inibidores da Transcriptase Reversa/química , Simulação de Dinâmica Molecular , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Transcriptase Reversa do HIV/uso terapêutico , Farmacóforo , Simulação de Acoplamento Molecular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
20.
J Med Virol ; 96(2): e29423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285479

RESUMO

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Infecções por HIV , Linfoma , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Regulação para Baixo , Herpesvirus Humano 4/genética , Infecções por HIV/genética , HIV-1/genética , Cadeias HLA-DRB1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...